All News and Perspectives
-
November 29, 2021
-
July 1, 2021
-
April 30, 2021
-
February 15, 2021
-
January 19, 2021
Brief: U.S. DOT Releases New Autonomous Vehicles Comprehensive Plan
-
December 1, 2020
U.S. Transportation Department Key to Biden Meeting Paris Agreement Targets
-
November 24, 2020
Many Frustrated as FCC Rules to Reallocate 5.9 GHz Spectrum Away from Transportation Safety
-
September 17, 2020
-
June 24, 2020
Could Greenhouse Gas Emissions Be Added To COVID-19’s Casualty List?
-
March 9, 2020
-
January 20, 2020
Overcoming The High Carbon Debt of Electric Vehicle Production
-
January 9, 2020
How Cities Can Digitize Their 21st Century Mobility Policies
-
September 26, 2019
-
July 30, 2019
U.S. Falling Behind in Smart City Deployments and Key 21st Century Infrastructure
-
April 19, 2019
-
April 18, 2019
-
April 10, 2019
-
January 31, 2019
-
January 16, 2019
Let’s Hope Trump Considers Infrastructure a National Security Issue Too
-
December 12, 2018
-
August 16, 2018
Autonomous Vehicles: Planners Aren’t Planning, Just Reacting
-
July 26, 2018
Blockchains, Smart Contracts, and the Future Of Transportation Security
-
July 20, 2018
Transportation – The New Villain in America’s Fight Against Greenhouse Gas Emissions
-
April 5, 2018
-
February 26, 2018
-
October 27, 2017
-
October 20, 2017
-
October 11, 2017
-
October 6, 2017
AV START Act Unanimously Clears US Senate Commerce Committee
-
September 25, 2017
Metropolitan Areas + Autonomous Vehicles – Congestion = Savings
-
September 18, 2017
-
September 11, 2017
-
August 8, 2017
-
July 7, 2017
Bills, Bills, Bills: A Look at the AV Bills Currently Moving Through Congress
-
June 27, 2017
-
June 27, 2017
-
June 26, 2017
-
June 19, 2017
-
June 9, 2017
-
May 23, 2017
-
May 18, 2017
-
May 18, 2017
-
May 4, 2017
Can Government Overcome Hurdles to Infrastructure Investment?
-
May 3, 2017
-
April 10, 2017
Proving It: Connected Infrastructure & AV Research Vital to a National Strategy
-
April 9, 2017
Atlanta Bridge Crisis: A Plea For Federal Infrastructure Investment
-
April 7, 2017
Bi-partisan support in the Senate for AV/CV funding. Thank you to our Senator Tammy Baldwin!
-
April 3, 2017
Tractors, Hackers, and Other Factors: The Necessity of Neutral Third Parties in the AV Realm
-
April 3, 2017
-
March 31, 2017
-
March 28, 2017
-
March 28, 2017
-
March 21, 2017
How Will AVs Navigate Signalized Intersections?
June 27, 2017 • Robert Fischer, GTiMA President
Autonomous vehicles promise such a degree of improved safety that we sometimes picture them as all-powerful, faultless machines. To a large extent, they will need to be. But how can we be sure they’re safe even in the most risky situations?
Consider the signalized intersection. Since their appearance at the end of the 19th century, traffic lights have been the primary mode of granting access to road intersections. However, traffic statistics show that, despite their claim to only a tiny percentage of road area, intersections are where 25% to 45% of all traffic collisions occur. Why is this?
When you think about it, it starts to become obvious. Intersections bring together cars traveling in all directions and then asks them to proceed through in groups timed by traffic signals. If any one car makes a false start, or speeds through the intersection and collides with a car in front of them, the entire exchange is compromised. And since cars are coming from all directions at various speeds, the risk of an accident that causes injury and/or major damage to vehicles goes way up, too.
So how will autonomous vehicles navigate the signalized intersection?
Therein lies the debate: will AVs independently “sense” their way through intersections using onboard sensors capable of discerning, for instance, the color of traffic lights, all while communicating with other vehicles (V2V) — or will AVs be “escorted” through intersections via connected infrastructure (V2I)?
As it turns out, the case for the V2V argument is in question. For starters, we would need to trust that every manufacturer has built in precise, latency-proof communications units that ensure constant communication with every other car. Statistically, the odds of that happening aren’t good, and it seems like too big of a risk when all it takes is the failure of one sensor on one car to cause an accident.
Furthermore, according to a paper by the Journal of Artificial Intelligence Research, “a vehicle approaching an intersection can quickly find itself in a situation where a collision is unavoidable, even when it has acted optimally.” In other words, even if no car overtly malfunctions, you can hardly call the intersection safe. As the JAIR paper notes, an intersection has very specific points of potential collision – hotspots that only one car at a time can occupy. That’s engineer-speak for “two cars occupying one hotspot will cause an accident.”
And this is why there’s a strong case for the V2I argument (where AVs get escorted through the intersection). The paper goes on to argue that an intersection needs its own “cooperative vehicle intersection control system (CVICS)” – hardware and software located at every interchange, which keeps an eye on all the points of potential collision and guides AVs through based on its safety-first algorithm.
Remember that acronym, CVICS, because it’s going to be a huge factor in the success of autonomous vehicles. It is absolutely essential for the safety of AVs, which can’t reasonably be expected to never run into trouble in a complex intersection, no matter how advanced they become.
Researchers at JAIR aren’t the only researchers arguing that CVIC systems are going to be a necessity for autonomous vehicles. There seems to be a consensus forming around the idea, to the point where researchers are now trying to determine the best algorithms for intersection control. MIT recently reported research on a “slot-based system”, similar to airplane-boarding procedures, designed for slow guidance through intersections in groups. They were essentially building on an IEEE research paper that offered a detailed algorithm for intersection control units to deploy.
The results from IEEE’s testing of their algorithm is worth a look. Not only was the flow through the intersection optimized for safety as expected, researchers also noticed some other improvements: vehicle stop delay time was reduced by an astonishing 99%, improving average travel time (under the presumption that a commute will involve several encounters with CVICS) by 33% or more. Carbon dioxide emissions were reduced by 44%, correlating directly with fuel savings of 44%. Basically, the researchers found that CVIC systems not only ensured safety, but made the process of getting through an intersection much faster. What’s not to like?
We remain optimistic about the safety benefits offered by autonomous vehicles. But the research is out there, and it’s compelling. Rather than risk public distrust in autonomous vehicles following a few crash-causing anomalies in intersections, it makes sense to deploy CVIC systems with proven algorithms to make intersections foolproof.
Just as we will eventually cede the wheel to our AVs, we will also need them to cede the wheel to CVICS from time to time and, in principle, the statistics showing such a disproportionate number of accidents occurring in intersections will shrink down to zero. We know that in the future our cars will be smart, but their interoperability with safety-oriented systems like CVICS will allow them to be brilliant.
Rob Fischer is President of GTiMA and a senior advisor to Mandli Communications’ strategy team. GTiMA and Mandli Communications are both proud partners of the Wisconsin Autonomous Vehicle Proving Ground.
Follow Rob on Twitter (@Robfischeris) and Linkedin.